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Pion-Proton Elastic Scattering from 3 GeV/c to 5 GeV/cf 
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Results of a spark chamber experiment on elastic scattering of pions on protons are presented and analyzed. 
The processes studied were ir+p at 2.92 GeV/c, and iTp at 3.15, 4.13, and 4.95 GeV/c. The data are fitted 
to an exponential function of the four-momentum transfer, /, in several different ways in attempts to explore 
systematic energy and angular dependences. No shrinkage of the diffraction peak is seen in comparing the 
coefficients of a linear exponential fit for | / | <0.4 (GeV/c)2; at larger | / | , however, the cross section falls off 
with increasing energy. The large-angle differential cross section is examined for structure and is compared 
with all other large angle scattering data. The results are compared with proton-proton scattering data 
over the same energy range and substantial differences between the two processes are evident. 

I. INTRODUCTION 

THIS paper reports the results of measurements of 
the elastic differential cross section of w~ mesons 

on protons at 3.15, 4.13, and 4.95 GeV/c, and of ir+ 

mesons on protons at 2.92 GeV/c. These measurements 
are compared with other published pion-proton elastic 
scattering data at similar and higher energies and with 
proton-proton elastic scattering results. The relevant 
theories are reviewed and examined in the light of 
these data. 

The results of the measurements of the diffraction-
peak part of the differential cross section have already 
been reported.1 They were interpreted with respect to 
the Regge theory of elastic scattering and the conclu
sion was that although the diffraction peaks had, at 
least approximately, the predicted exponential be
havior, there was little or no evidence for the predicted 
shrinking of the iTp diffraction peaks with increasing 
energy. Higher-energy measurements of the w~p elastic 
diffraction peak2 subsequently confirmed the nonexist
ence of the shrinkage. Section V of this paper is devoted 
to a further discussion of the diffraction peak results, 
mostly with respect to the precise shape of the diffrac
tion peak. 

This experiment used thin-plate spark chambers and 
a liquid hydrogen target and was carried out at the 
Bevatron of the Lawrence Radiation Laboratory. The 
apparatus and method of analysis are briefly described 
in Sec. I I I . In Sec. IV, completely analyzed results of 
the experiment are tabulated and plotted. Section VI 
is devoted to a discussion of the large-angle scattering, 
for which only very preliminary results have been pub
lished.3 In Sec. VII pion-proton and proton-proton 
scattering are compared and discussed. Throughout 
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this paper, all kinematical quantities and differential 
cross sections are in center-of-mass systems; energies 
are given in GeV, momenta in GeV/c, distances in cm, 
and wave numbers in cm-1, unless otherwise indicated. 
An exception is the laboratory momentum of the inci
dent pion which is used to specify each of the four sets 
of data. 

Before discussing specific theories, it is useful to 
recall the features of high-energy pion-nucleon elastic 
scattering. The first distinctive feature of pion-nucleon 
elastic scattering when the laboratory momentum of the 
incident particle is above 2 GeV/c is a narrow forward 
peak which contains almost all of the total elastic cross 
section. This same feature occurs in all other instances 
of high-energy elementary-particle elastic scattering 
which have been measured thus far: for example, ppf* 
pp,& and K+p.7 The second distinctive feature of pion-
nucleon elastic scattering is characteristic of all other 
measured system as well: The total elastic cross section 
is a rather slowly varying function of energy compared 
with any particular inelastic channel. As examples of 
these features at 5 GeV/^, the w~p differential cross sec
tion, which has a value of about 30 mb/sr in the center-
of-mass system at 0°, drops to one-tenth of its value a t 
21° and to one-hundredth of its value at 32°. Further
more, the forward peak contains at least 95% of the 
total elastic cross section up to 32°. The total elastic 
cross section at 5 GeV/c is 6.5 mb, whereas at 10 GeV/c 
it is 4.6 mb.8 This forward peak may be interpreted as 
diffraction scattering, noting that in this range of 
momenta the wavelength of the pion is of the order of 
or less than the nucleon radius. The diffraction peak 
follows classically from the imaginary scattering ampli
tudes corresponding to the various inelastic channels. 

While the diffraction analogy justifies the existence 
of a forward peak, it does not explain the very small 
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A. M. Wetherell, Phys. Rev. Letters 9, 108 (1962). 
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7 V. Cook, D. Keefe, L. T. Kerth, P. G. Murphy, W. A. Wentzel, 

and T. F. Zipf, Phys. Rev. 129, 2743 (1963). 
8 S. Brandt, V. T. Cocconi, D. R. O. Morrison, A. Wroblewski, 

P. Fleury, Phys. Rev. Letters 10, 413 (1963). 
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elastic-differential cross section at large angles; that is, 
it does not explain why almost all elastic scattering is 
diffractive. An admittedly weak explanation is that as 
the energy increases substantially, the total cross sec
tion of any particular channel usually decreases rapidly. 
There is nothing special about the elastic channel, and 
therefore its total cross section should decrease rapidly, 
except that the diffraction requirements "force" the 
elastic scattering to stay large in the forward direction. 
Part of this argument is made explicit in the " sta
tistical model theory'' of large-angle scattering given 
in Sec. I I . 

Most of the theoretical work has been concerned with 
the diffraction region, where data are more abundant 
and theoretical treatment is more straightforward. 
Convenient kinematical parameters for describing the 
process are s, t, and u, defined as follows in terms of 
incident pion and proton four momenta, q\ and pi, 
respectively, and of the corresponding outgoing four 
momenta, qi and pi: 

s=(pi+qx)2, 

t={pi~p2)\ (1) 

u=(pi—q2)2. 

The variable 5 is the square of the total c m . energy; 
and / is the square of the four-momentum transfer, 
given also by 

/ = - 2 | q | 2 ( l - c o s 0 ) , (2) 

where q is the three momentum and 0 is the scattering 
angle of the pion. For purposes of discussion we desig
nate the diffraction region as the range of 0 for which 
| / | <0.8 (GeV/c)2. While no break in the cross section 
exists at this value, it is found that almost all of the 
forward elastic peak is included in this / region and that 
the diffraction region theories are expected to hold 
best for this region. When comparing the pion-proton 
with the proton-proton system we shall use this same 
separation point. 

A large-angle scattering region of particular interest 
which occurs in pion-proton and other elastic scattering 
of unlike particles (but not in proton-proton scattering) 
is the region near 0= 180°. As described in Sec. I I , this 
region is supposed to be dominated by processes com
pletely different from those which produce the diffrac
tion peak. There has been particular interest in the 
possibility of a backward peak near 180°. 

II. THEORIES OF PION-NUCLEON 

A. General Consideration 

L Isotopic Spin Dependence 

Pomeranchuk9 and others have shown that as the 

9 1 . Pomeranchuk, Zh. Eksperim. i Teor. Fiz. 34, 725 (1958) 
[translation: Soviet Phys.—JETP 7, 499 (1958)]; V. S. Bara-
shenkov, Usp. Fiz. Nauk 72, 53 (1960) [translation: Soviet 
Phys.—Usp. 3, 689 (1961)]. 

energy increases, the total w+p and ir~p cross sections 
should become equal. There is no proof that the total 
elastic cross sections or the differential cross sections 
should become equal, but all the theories of scattering 
outlined below indicate strongly that the diffraction 
scattering should become independent of isotopic spin. 
This is probably not true for large-angle scattering, 
particularly for the 180° region where the major dif
ferences discussed below might be expected to occur. 

2. Forward Elastic Scattering 

The scattering amplitude is defined by 

(d<r/dQ)(8)=:\f(e)\>, (3) 

and the optical theorem states, neglecting Coulomb 
scattering, 

Im/(0)=(£/47r)<r tot, (4) 

where k—\q\/n. Then 

(Ar/(ffi) (0) = I Re/(0) 12+ (&2/167r2ytot2. (5) 

I t is usually assumed from rough measurements and 
from calculations using forward dispersion relations 
that the Re/(0) is small compared with the Im/(0). 
This assumption will be tested again with the present 
data, but most of the diffraction theories are based on 
a purely imaginary value of /(0). 

B. Theories of Diffraction Scattering 

1. Optical Model 

The partial-wave expansion for the scattering ampli
tude is 

/(*) = — £ (2Z+l)(l-i7i)P,(cos0). (6) 
24k 1=0 

The simplest derivation of the diffraction peak is then 
obtained (as shown in the Appendix) by setting 

L=kR, rji = a, 0 < K L , 

and 

* , = 0 , 1>L, (7) 

where a, which is real and less than 1, is the amplitude 
of the transmitted wave from a unit incident wave. The 
quantity (1—a) is then the "opacity" and R is the radius 
of the proton in this simple model. 

The following results are obtained for the diffraction 
region: 

f(6) = Ul-a)kR\ 

d<r rJiikRd)-]2 

- « 0 = ( l - a ) W , 
da L kRd J 

o- t o t=27r( l -a ) i? 2 . 

(8) 
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Although a more sophisticated optical model can be 
made,10 we will use only the simple Eqs. (8). 

2. Theories Based on the Mandelstam Representation 

All relativistic and field-theoretic descriptions of 
elastic scattering have come, at least partially, from the 
Mandelstam representation. The basic idea, that the 
scattering amplitude is to be derived by studying the 
singularities in the cross channels which are the pion-
pion system, has been discussed in detail by Chew.11 

Diffractive scattering in terms of the singularities of 
the pion-pion system alone has been studied by a 
number of authors.12,13 The general reasoning is based 
on the fact that the diffraction peak occurs at small 
negative values of t and the pion-pion singularities 
occur at small positive values of t, whereas the crossed-
channel pion-nucleon singularities occur at very large 
negative values of t. The supposition is then made that 
the diffraction peak can be understood in terms of 
closely lying pion-pion singularities. We may replace 
/(0) by f(s,t) and factor out the 2=0 behavior of f(s,t) 
so that 

d*/<m=U(s,t)7=U(sfi)JU(s9t)/f(sfl)J. (9) 
Setting f(s,t)/f(sfi) = F(s,t) yields 

da/dtt=f(s,0)2F(s,t). (10) 

da | q | 2 da 

dtt T dt 

Finally, 

(u) 

3. The Regge Theory 

According to the ideas of Chew and Frautschi,14 

Frautschi et a/.,15 and Drell,16 pion-nucleon diffraction 
scattering may be explained by the P (Pomeranchuk 
or Vacuum), Pi (Pomeranchuk prime), and p trajec
tories. The scattering amplitude for large s and small 
111 is written 

1 / s\ai{t) 

f(s,t) = - E f t W ( - ) , (14) 
87T\A * \SQ/ 

where the i sums over all the trajectories. While this 
f(s,i) has a limited type of s dependence, there are too 
many unknown functions to allow testing of the theory 
by present diffraction data. Thus, Eq. (14) could fit 
almost any data. 

The applicability of the simple Regge theory to the 
diffraction scattering problem has recently been brought 
into serious doubt, not only by high-energy elastic-
scattering data2 but also by unpublished calculations 
reported to demonstrate the existence of cuts in the 
complex a (angular momentum) plane. 

The number of unknown functions can be reduced by 
assuming that at large .? the P trajectory is the most 
important one since for small | / | , aP(t) is larger than 
other ai(t). Keeping only the term containing the next 
largest a, say «i, we may write 

/(V)=(VW*) 

so that 

da 

dt 

/(*,0)=(1/W*) 

xD5p(o)^Ao)^(0)+ft(o)(^Ao)ai(0)]. 

(15) 

:!/(*: 
L lq | 

0) | 2 H ^ = ~ ( T ) F ^ ' ^1T) A s s u m i n g ap(0) = l, the first two terms in F(s,t) are 

The high-energy approximation Re/(s,0) = 0 and Eq. 
(5) yields 

-da/dt= (atot
2/16irW)F(s,t). (13) 

Now the observation of high-energy diffraction scat
tering has shown that F(s,t), i.e., the shape of the dif
fraction peak, is not very energy-dependent. Therefore, 
the aim of relativistic diffraction theories has been to 
produce an F(s,t) in which the s dependence is small 
and the t dependence not only fits the data but has 
some justification from the Mandelstam representation. 
This has been done by Amati et at.12 and by Lovelace.13 

With our data the s dependence can be only roughly 
examined, and we will confine ourselves to the simplest 
Regge theory in examining it. Even if the Regge theory 
were not right, it would still provide a convenient way 
to parameterize the s and / dependence of the elastic 
scattering. 

ns,ty= 
l/3p(0) 

(s/so) 2aP(<)—2 

[2Re[/3p(W«]l 
+ | : — \(s/so)apW+alW-*. (16) 

Lacking knowledge of the £(£), these two terms can be 
separated only by their s dependences. However, the 
observed s dependence of F is small. This F(s,t) may 
be rewritten making use of the following assumptions. 
Considering aP(t) = a1(t)-{-A, Eq. (16) can be factored 
to the following functional form : 

F f e O ^ | ^ ( / ) / ^ ( o ) | 2 ( ^ A o ) 2 ^ ( i ) - 2 [ i + g ( ^ - A ] . (17) 

In the case of the P' trajectory, A is presumed to be 
about 0.5. Thus, although it is predicted that the dif-

10 R. Serber, Phys. Rev. Letters 10, 357 (1963). 
11 G. F. Chew, S-Matrix Theory of Strong Interactions (W. A. 

Benjamin, New York, 1961). 
12 D. Amati, S. Fubini, and A. StranghelHni, Phys. Rev. Letters 

1, 29 (1962); D. Amati et al, Nuovo Cimento 22, 569 (1962). 
13 C. Lovelace, Nuovo Cimento 25, 730 (1962). 

14 G. F. Chew and S. F. Frautschi, Phys. Rev. Letters 7, 394 
(1961). 

15 S. C. Frautschi, M. Gell-Mann, and F. Zachariasen, Phys. 
Rev. 126, 2204 (1962). 

16 S. D. Drell, in Proceedings of the 1962 Annual International 
Conference on High-Energy Physics at CERN (CERN, Geneva, 
1962), p. 897. 
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fraction scattering peak due to the Pomeranchuk tra
jectory will shrink with increasing energy, the situation 
may be altered by the presence of terms from other 
trajectories. Only the leading term will be kept in the 
following discussion, although the parameterization of 
Eqs. (16) and (17) should be borne in mind. This same 
point has been made by Hadjioannou et al.17 in discuss
ing the t dependence of pp diffraction scattering. 

Continuing with the Pomeranchuk trajectory alone, 
we may drop the subscript P and write 

da /da\ \p(t) j 2 / s \2«(«>-2 
— ^ ( — ) 1 - • (18) 
dt \dt/M\p(0)\ \so/ 

For small 11\, the experimental data are well fit by 

da/dt= (da/dt) *,0 exp[A (s)f\. (19) 
Thus, if 

a(t)=l+af(0)t and /3(/) = /3(0) exp[t?/], 

we may write 

da/dt= (da/dt) t=o exp [ ( 7 +2a ' (0) \ns)t] , (20) 
where 

y = 7]-2af(0)lns0. 

C. Theories of Large-Angle Scattering 

1. The Statistical-Model Theory 

Fast et al.ls have calculated the cross section for 
elastic scattering with the scattering considered as just 
one of the many final-state channels occurring in the 
statistical model of high-energy elementary-particle 
collisions. The statistical model is concerned with cen
tral and not with peripheral collisions. Therefore, it may 
yield that part of the elastic cross section which is not 
given by the diffraction theories, all of which are con
cerned with peripheral collisions. In effect, the sta
tistical model assumes some probability for a " time-
like" intermediate state: an excited or "compound" 
nucleon. This is in contrast to the " space-like" inter
mediate state, or propagator, of peripheral models. 
Time-like intermediate states appear to be a valid 
physical concept at energies below 2 GeV (the resonance 
region). The question of the validity of the statistical 
model may be interpreted as asking whether the proba
bility for the formation of time-like intermediate states 
falls off only slowly with increasing energy and whether 
it is through these states that some rare final states, 
such as large-angle elastic scattering, are reached at 
high energy. Fast et al.18 find that the total nondiffrac-
tional cross section decreases exponentially with increas
ing center-of-mass energy, according to the exponent 
( —3.17Ec.m.). They assume the angular distribution to 
be isotropic in the center-of-mass system. 

17 F. Hadjioannou, R. J. N. Phillips, and W. Rarita, Phys. Rev. 
Letters 9, 183 (1962). 

18 G. Fast and R. Hagedorn, Nuovo Cimento 27, 208 (1963); 
G. Fast, R. Hagedorn, and L. W. Jones, ibid. 27, 856 (1963). 

2. Backward Peak from Partial-Wave Expansion 

Blokhintsev19 has shown how the same assumptions 
which lead to the diffraction peak also lead to a peak at 
180°. We have given an alternative derivation in the 
Appendix, where we show that if 

0 '=18O°-0 , 
then 

(da/dti)(6f) = {\-a)2R2[_B(kRBf)J, (21) 

where B(kRB)2 is a function plotted in Fig. 1 for com
parison with the diffraction-peak function \_Ji(kRB)/ 
kRdy. The ratio of the backward-peak height at 180° 
to the forward-peak height at 0° is l/k2R2, and since kR 
is the maximum angular momentum L which enters 
the reaction, the backward peak is 1/X2 times the 
height of the forward peak. Since L = kR at, say, 4 
GeV/c=10, the backward peak predicted in this way 
is quite small in comparison with the forward peak. 
The total backward elastic-scattering cross section in 
this peak is 

^elastic backward peak == 0 . 7 8 (1 ~ O)2TT\2 . ( 2 2 ) 

Thus, this theory predicts a small backward elastic 
peak whose total cross section goes inversely as k2 or 
approximately inversely as s. We shall examine the 
data with reference to the existence of such a peak. 

3. Backward Peak from a Neutron or Nucleon Isobar Pole 

As stated earlier, in principle, the elastic scattering 
near 180° should be calculable from singularities in the 
cross pion-nucleon channel. The relevant relativistic 
invariant is now u, where 

^ = [ ( M 2 - w 2 ) 2 A ] ~ 2 | q | 2 ( l + c o s 6 > ) . (23) 

Here M is the proton mass and m the pion mass. I t 
will be noticed that unlike t, which is 0 at 0 = 0 and is 
always negative in the physical region, u— (M2—m2)2/s 
at 0= 180° and is negative only for 

(M2-m2)2 

cos0> 1. (24) 
2|q |2* 

Singh and Udgaonkar20 have discussed briefly the back
ward peak to be expected on the basis of the strip ap
proximation to the Mandelstam representation. They 
estimate that the width of the peak in terms of u should 
be about four times the width of the forward peak in 
terms of t. At 4 GeV/c the half-width would be 0.4 
(GeV/c)2 in terms of u, or 0.12 in terms of cos0. 

Several authors have conjectured that ir+p elastic 
scattering near 180° might be attributed mostly to a 
neutron exchange [Fig. 2(a)] . If this very simplified 
way of using the singularities of the cross pion-proton 
channel is valid, ir~p elastic scattering near 180° might 

19 D. I. Blokhintsev, Nuovo Cimento 23, 1061 (1962). 
20 V. Singh and B. M. Udgaonkar, Phys. Rev. 123, 1487 (1961). 
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tions [/i (kR6)/kReJ 
and [B{kRB)J ver
sus kRB. 

be attributed mainly to the exchange of the §, § nucleon 
isobar [Fig. 2(b)] . In these surmises the hope is that 
higher-order diagrams such as the f, f isobar for w+p 
and Fig. 2 (c) for both w+p and it~p will not change the 
result much. But Cook et al21 have shown that in ir+p, 
180° scattering the calculation based solely on neutron 
exchange gives the absurdly large answer of 90 mb/sr. 
Clearly, then, the other diagrams must be considered. 
No one has found specific means of doing so, but an 
unpublished calculation of Pomeranchuk22 gives the 
ir+p, 180° differential cross section as about 1 mb/sr. 
We will compare this prediction with our data, al
though the means of calculation is not known to us. 

4. Regge Theory for Large Angles 

The differential cross section at large (t | values can 
be fitted by Regge trajectories in the / channel because, 
as shown in Eq. (17), there is considerable freedom in 
the large 11 | predictions. The question arises of how the 
amplitudes from the / and u channels can be combined 
if the values of u are of the same order of magnitude as 
the values of t. 

One solution is to follow DrelPs suggestion16 and 
assume that the amplitudes from the u trajectories are 
very small in comparison with those from the t tra
jectory. Here we are saying in another way what was 
said in the last section: From the standpoint of both 
Mandelstam theory and Regge theory, the u channel 
somehow contributes very little to the large-angle 
elastic scattering, except perhaps near 180°. Therefore, 
we will continue the s, t parameterization discussed in 
Sec. IIB4 into the large-angle region, out approximately 
as far as 11 \ ~2 GeV/c. In the proton-proton case the 
shrinkage of the forward peak is most apparent at 
large t values, which are outside the diffraction region. 
We shall see if this is also true for the pion-proton case. 

One may explore the contribution of u channel tra
jectories near 0=180°. In particular, translating the 

21 V. Cook, B. Cork, W. R. Holley, and M. Perl, Phys. Rev. 
130, 762 (1963). 

22 Y. D. Boyukov, G. A. Leskin, D. A. Suchkov, Ya. Va. 
Shalamov, and V. A. Shebanov, Zh. Eksperim. i Teor. Fiz. 41, 
52 (1961) [translation: Soviet Phys.—JETP 14, 40 (1962)]. 

discussion of Sec. IIC3 into the Regge language, in ir+p, 
180° scattering we would hope to investigate the Regge 
neutron trajectory. 

The kinematic relation (24) causes a difficulty in the 
Regge treatment of the u channel. The basic idea of the 
Regge theory is that the cosine of the scattering angle 
in the cross channel should be much greater than 1. 
For the / channel, 

cos0* —» 1-
s-i(\t-rn2yi*- (It-M2)1'2!2 

2(\t-m2)li2{\t-M2) 1/2 
(25) 

In the forward peak, s^>t, and, thus, c o s 0 ^ 1 for 
s^>Mm; but for the u channel, 

COS0,, 
2[su-(m2--M2)2~] ~ 

(u-m2-M2)2-Am2M2-
(26) 

At u=(M2-tn2)2/s, i.e., at 0=180°, c o s 0 w = - l for all 
s, and at ^ = 0 , cos0w= + 1 for all s. To obtain a "large" 
value of cosdu, say 3 or 10, requires a fairly large value 
of \u\ as given in Table I. Now the Regge theory gives 

TABLE I. The values of cos0 at 4.0 and 10.0 GeV/c in irp elastic 
scattering for particular values of cos0u. 

cosdu 
4.0 GeV/arp 

cos0 6 
10.0 GeV/arp 

cos0 0 

-1.0 
+ 1.0 
4-3.0 
+ 10.0 

-1.000 180° 
-0.974 167° 
-0.925 158° 
cannot be reached 

-1.000 
-0.992 
-0.987 
-0.941 

180° 
173° 
171° 
160° 

a simple forward-peak prediction, once the Pomeran
chuk trajectory is taken as dominant, because for small 
\t\,ap(t) can be taken as linear and the theory holds 
best at t—0, which corresponds to 0 = 0. But in the 
backward hemisphere there is the ambiguous region 
extending from 0=180° to the angles listed in Table I 
at which cos0w becomes large; and this includes the 
region of small u, where the Regge theory would other
wise be most applicable. Therefore, Regge predictions 
of a backward peak, interpretable as a nucleon or 

(a) (b) (c) 

FIG. 2. Feynman diagrams for backward elastic pion-nucleon 
scattering for the cases (a) ir+p-^ir+p with neutron exchange, 
(b) iTp-^iTp with doubly charged J —f nucleon isobar ex
change, and (c) irp —* irp with one nucleon and two or more pions 
exchanged. 
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SC3 SC3' C 

FIG. 3. Schematic, scale diagram of the experimental arrange
ment. SCI-SC6 are spark chambers, the black bars labeled C are 
coincidence scintillation counters, and those labeled A are anti
coincidence counters. The axial cylinder indicates the location of 
the 18-in. liquid-hydrogen target. 

nucleon isobar trajectory, are vague. In particular, 
predictions of the s behavior, analogous to the predicted 
shrinkage with increasing s of the forward peak, seem 
difficult. I t is only at energies much higher than those 
in this experiment, i.e., cases in which the ambiguous 
region has shrunk considerably, that the Regge pre
dictions become clearer. Therefore, in spite of the 
great interest in finding an effect of the nucleon or 
nucleon-isobar Regge trajectory at 180° pion-proton 
scattering, our data force us to ignore this question 
unless the Regge predictions are clarified. 

III. APPARATUS AND METHOD OF ANALYSIS 

The pion beams were obtained from the Bevatron 
of the Lawrence Radiation Laboratory. The w~ beam 
was produced at 0° inside the Bevatron magnet and the 
7r+ beam was produced at 26° in a straight section. This 
large production angle limited the maximum 7r+ mo
mentum to 3 GeV/c and led to difficulties in normaliza
tion of the 7r+ data due to proton contamination of the 
beam. The momentum spread of the beam was ± 3 % 
at half maximum for the ir~p and somewhat larger for 
the w+p. 

Figure 3 shows a schematic horizontal view of the 
equipment.23 The two small spark chambers 1 and 2 
measure the angle of the incident pion. The double 
spark chambers 3, 3' and 4, 4' measure the angles of 
tracks going out the sides. The spark chambers 5 and 
6 are spaced 2 ft apart in order to give a good angular 
measurement of forward-going particles. The scintilla
tion counters in Fig. 3 were operated in coincidence 
circuits so that a signal had to be received in coincidence 
by at least one left-hand and one right-hand counter in 
order to pulse the spark chambers and record a 
photograph. 

Using a combination of mirrors, the vertical and 
horizontal projections of the tracks in all spark cham
bers were imaged onto a single 35-mm film frame. A 
typical elastic scattering event is reproduced in Fig. 4. 
Since the counters were designed to accept particles 
from every point in the target making an angle of 
db!5° with the horizontal plane, the photographs 

generally show at least two roughly coplanar tracks. 
Within wide limits, all events showing just two out
going particles, A and J5, were measured to determine 
angles and intercepts of the tracks A and B, as well as 
of the incoming pion track, w. These measurements 
were then processed by a computer to select elastic 
events according to criteria of coplanarity, vertex fit, 
and agreement with elastic kinematics. If we let &, A, 
and B be the unit vectors in the direction of motion in 
the laboratory of the incident pion, particle A, and 
particle By respectively, then the degree of coplanarity 
is defined by the angle </> where sin<£=7c« (A x ft)/ 
| A x ft |. Given that 6 A and 6B are defined from COS0A 
= «• A and cos0j3 = £«ft, the degree of conformity of 6A 

and 6B with a particular kinematic curve is measured 
by the distance D in degrees, defined as the perpendicu
lar distance of the measured 6A-6B point to the par
ticular kinematics curve, as shown in Fig. 5. 

Of course, the precison of the angular measurements 
is limited by finite spark width, multiple scattering, 
optical distortions, etc., so that nonzero ranges of 4> and 
D must be allowed. If these ranges are made too small, 
real two-body final-state events will be excluded. If 
these ranges are made too large, final-state events of 
three or more bodies may have too large a probability 
of acceptance. The elastic diffraction scattering has a 
large total cross section, several millibarns in this 
momentum range; and for these small angles the 
background-event contamination was negligible. There
fore, the diffraction scattering data were used to deter
mine the ranges of <t> and D. We found that both <j> and 
D fit a normal error curve with standard deviations of 
0.4° and 0.6°, respectively. These directly measured 
standard deviations in <j> and D agreed with those 
calculated from the standard deviations in the direct 
angular measurements. Calculations also showed that 
4> and D standard deviations were almost independent 

23 The apparatus and technique of this experiment are further 
discussed in E. Bleuler et aln Nucl. Instr. Methods 20, 208 (1962). 

FIG. 4. Photograph of an elastic scattering event taken from 
the data film. Here 18 views of the 9 separate spark chambers 
combined on one film may be seen. The liquid-hydrogen target 
lies behind the fiducial plane containing the roman numerals. 



1258 P E R L , J O N E S , A N D T I N G 

TABLE II. Elastic scattering differential cross sections for 2.92-GeV/c 7r+p; s = 6.3S (GeV)2, Ins = 1.85. 

cos0 

0.97 to 
0.96 to 
0.94 to 
0.92 to 
0.90 to 
0.88 to 
0.86 to 
0.84 to 
0.82 to 
0.80 to 
0.78 to 
0.76 to 
0.74 to 
0.62 to 
0.49 to -

-0 .24 to -
-0 .58 to -

0.96 
0.94 
0.92 
0.90 
0.88 
0.86 
0.84 
0.82 
0.80 
0.78 
0.76 
0.74 
0.62 
0.49 

-0.24 
-0.46 
-0.92 

(da/dti) (mb/sr) 

7.33 ±0.64 
4.80 dbO.33 
3.81 ±0.29 
2.30 ±0.21 
1.62 ±0.18 
1.03 ±0.13 
0.87 ±0.13 
0.71 ±0.12 
0.53 ±0.11 
0.39 ±0.09 
0.43 ±0.10 
0.27 ±0.08 
0.086±0.022 
0.016±0.014 
0.023±0.012 
0.035±0.021 
0.004±0.004 

-CGeV/c] 2 

at center of 
interval 

0.082 
0.118 
0.164 
0.212 
0.258 
0.306 
0.352 
0.400 
0.446 
0.494 
0.540 
0.588 
0.752 
1.05 
2.06 
3.17 
4.11 

-u[0tSf/cJ 
at center of 

interval 

3.54 
2.53 
1.41 
0.474 

[4ir/(k<rtot)y(d<r/dti) 

0.4654±0.0406 
0.3048±0.0210 
0.2419±0.0184 
0.1460±0.0133 
0.1028±0.0114 
0.0654±0.0082 
0.0552±0.0082 
0.0451±0.0076 
0.0336±0.0070 
0.0248±0.0057 
0.0273±0.0063 
0.0171±0.0051 
0.0055±0.0014 
0.0010±0.00089 
0.0015±0.00076 
0.0022±0.0013 
0.0002±0.0002 

of 6A and fe, and could be used in considerations of 
large-angle elastic scattering when the background was 
important. Because of the loose criterion used in se
lecting events for measurement, events were obtained 
not only near the kinematics curves of interest, but for 
a wide range of values of 6A and fe. This gave a dis
tribution of background events in the OA-OB plane 
which was found to vary slowly. If one considers an 
arbitrary line in the 6A-0B plane, the background events 
which lie within one standard deviation in D of this 
line and are coplanar to within one standard deviation 
in $ yield an average background cross section of 0.004 
mb/sr. This, then, determines the lower limit to de
tection of the differential elastic-scattering cross sec
tion in the present experiment. As will be seen in Sec. 
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-

FIG. 5. Kinematics of laboratory scattering angles for 4.0 GeV/c 
elastic irp scattering, with a typical data point shown to illustrate 
the meaning of the distance D. The two possible curves for a given 
measured pair of angles are shown where, for curve I, 0A = 0*, 
0B —Op) and for curve II, 0A = 0P and 0B=0V. 

IV, the large-angle scattering cross sections are very 
small, and this background is the principle source of 
the errors quoted. 

The large-angle cross section was determined as 
follows. For a particular range of cos# along the ir~p 
kinematics curve, all events coplanar to one standard 
deviation in <j> and within six standard deviations of D 
on both sides of the ir~p curve were collected. The 
events were distributed into equal intervals in D, and 
a weighted least-squares fit was made using the number 
of events in each D interval as the measured observable 
and D as the independent parameter to the equation 
of a linear background plus a Gaussian distribution of 
elastic events around the kinematics curve. The errors 
were then increased over counting statistics by a factor 
proportional to the square root of x2 u f ° r the fit as 
described above. This factor was typically between 1.0 
and 1.5. 

The data were corrected for the nuclear interactions 
and multiple scattering of the recoil particles in the 
target, spark chambers, etc. The effective </> angle sub
tended by the coplanarity counters was evaluated as a 
function of 9A and $B averaged over the target volume 
for the different 6A and BB relationships for each incident-
beam momentum. The effective target length corre
sponding to the different scattering angles was also 
computed and used with the above factors to convert 
corrected numbers of elastic events to differential cross 
sections. The results and errors presented here for large-
angle scattering differ from those reported earlier1 

primarily as a result of the explicit analysis subse
quently performed. 

The following data sample is drawn from over 50 000 
photographs and corresponds to from 1500 to 1800 
elastic events in each of the four data sets. 

24 P. Cziffra and M. J. Moravscik, University of California 
Radiation Laboratory Report UCRL Report 8523, 1958 
(unpublished). 



P I O N - P R O T O N E L A S T I C S C A T T E R I N G 

TABLE III . Elastic scattering differential cross sections for 3.15-GeV/c iTp\ 5 = 6.81 (GeV)2, lns=1.92. 
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COS0 

0.97 to 
0.96 to 
0.94 to 
0.92 to 
0.90 to 
0.88 to 
0.86 to 
0.84 to 
0.82 to 
0.80 to 
0.78 to 
0.76 to 
0.66 to 
0.56 to 
0.37 to -

-0 .13 to -

-0.47 to -

0.96 
0.94 
0.92 
0.90 
0.88 
0.86 
0.84 
0.82 
0.80 
0.78 
0.76 
0.66 
0.56 
0.37 

-0.13 
-0.47 

-0.92 

(da/dn) (mb/sr) 

9.30 ±0.64 
6.15 ±0.34 
4.99 ±0.29 
3.15 ±0.23 
2.08 ±0.19 
0.96 ±0.11 
0.64 ±0.11 
0.45 ±0.09 
0.48 ±0.09 
0.26 ±0.07 
0.31 ±0.08 
0.069±0.022 
0.036±0.019 
0.036±0.017 
0.019±0.010 
0 0 0 0 + 0 . 0 0 7 u.uuu__0 0 0 0 

0 0 0 3 + 0 . 0 0 3 

- C G e V A ] 2 

at center of 
interval 

0.090 
0.128 
0.179 
0.231 
0.282 
0.333 
0.384 
0.436 
0.487 
0.538 
0.589 
0.743 
0.999 
1.37 
2.25 

3.33 

4.34 

- ^ [ G e V A ] 2 

at center of 
interval 

3.65 
2.76 

1.69 

0.674 

[4T/(k<Tt0t)J(d*/dn) 

0.4554 ±0.0313 
0.3012 ±0.0166 
0.2444 ±0.0142 
0.1543 ±0.0113 
0.1019 ±0.0093 
0.0470 ±0.0054 
0.0313 ±0.0054 
0.0220 ±0.0044 
0.0235 ±0.0044 
0.0127 ±0.0034 
0.0152 ±0.0039 
0.0034 ±0.0011 
0.0018 ±0.00093 
0.0018 ±0.00083 
0.00093±0.00049 

0 00000+ 0 - 0 0 0 3 4 

u . u u u u u _ 0 0 0 0 0 0 
0 00015+ 0 - 0 0 0 1 5 
U , UUU15-0.00015 

IV. RESULTS 

The results are tabulated in terms of da/dti (mb/sr) 
and (d<r/dQ,)/(k(Tt/4:Tr)2 versus cos0 and / in Tables II 
through V. The errors given are statistical except for 
the large-angle points, where the statistical errors are 
scaled up somewhat, as discussed in Sec. III. In addi
tion to the quoted statistical errors, there is a normaliza
tion uncertainty in the ir~p data of ± 8 % and in the 
ir+p data of possibly Z\QVO (due to uncertainty in the 
proton contamination of the w+ beam). 

2.92 GeV/c TT+P -*• 7r+p 

FIG. 6. Elastic scat
tering differential cross 
sections for 2.92-GeV/c 
ir+p. The error's shown 
are statistical. An addi
tional normalization un
certainty of tlo%, is 
not indicated. The open 
circle at t = 0 is the opti
cal theorem prediction. 

The data are plotted in Figs. 6 through 9 on a semi-
logarithmic scale versus t. The energy-independent ex
ponential character of the diffraction peak is readily 
apparent. At 3 GeV/c there is some contribution to the 
elastic cross sections out to rather large angles (large 
| / | ) . At 4 and 5 GeV/c, however, the cross section 
appears to fall to very low values in the backward 
hemisphere, and our data in this region permit only 
upper limits to be placed on the elastic cross section. 
In Fig. 10 the data are plotted with all negative pion 
points on one graph to emphasize the similarity in 
slopes of the diffraction peak. In Fig. 11, a log-log graph 
is presented with all four sets of data included for com
parison with such theories as Serber's diffraction calcu-

3.15 GeV/c 7r"p-^7T~p 

FIG. 7. Elastic 
scattering differen
tial cross sections for 
3.15-GeV/c7r-^.The 
errors shown are sta
tistical. An addi
tional normalization 
uncertainty of ± 8 % 
is not indicated. The 
open circle at 2 = 0 is 
the optical theorem 
prediction. 



1260 P E R L , J O N E S , A N D T I N G 

TABLE IV. Elastic scattering differential cross sections for 4.13-GeV/c ir~p; s = 8.65 (GeV)2, Ins = 2.16. 

cos0 

0.98 to 
0.96 to 
0.94 to 
0.92 to 
0.90 to 
0.88 to 
0.86 to 
0.84 to 
0.82 to 
0.80 to 
0.76 to 
0.72 to 
0.60 to 
0.48 to -

-0 .26 to -

-0 .48 to -

0.96 
0.94 
0.92 
0.90 
0.88 
0.86 
0.84 
0.82 
0.80 
0.76 
0.72 " 
0.60 
0.48 

-0.26 

-0.48 

-0.93 

(da/dtt) (mb/sr) 

11.39 ±0.58 
5.92 ±0.34 
3.30 ±0.24 
1.96 ±0.19 
0.80 ±0.12 
0.60 ±0.10 
0.45 ±0.09 
0.22 ±0.06 
0.21 ±0.06 
0.15 ±0.05 
0.08 ±0.04 
0.013±0.008 
0.017±0.012 
0.005±0.003 
0 0 0 0 + 0 . 0 0 5 u . u u u _ 0 0 0 0 

+0.003 u . u u u _ 0 0 0 0 

-CGeVA] 2 

at center of 
interval 

0.104 
0.173 
0.243 
0.312 
0.382 
0.451 
0.520 
0.590 
0.659 
0.763 
0.902 
1.18 
1.60 
3.09 

4.75 

5.92 

-uiGeV/cJ 
at center of 

interval 

5.26 
3.77 

2.10 

0.940 

l4tir/(k<rtot)y (dv/dti) 

0.4514 ±0.0230 
0.2346 ±0.0135 
0.1308 ±0.0095 
0.0777 ±0.0075 
0.0317 ±0.0048 
0.0238 ±0.0040 
0.0178 ±0.0036 
0.0087 ±0.0024 
0.0083 ±0.0024 
0.0059 ±0.0020 
0.0032 ±0.0016 
0.00052±0.00032 
0.00067±0.00048 
0.00020±0.00012 

oooooo+ a 0 0 0 2 0 

a u u u u u - 0 . 0 0 0 0 0 
oooooo+0-00012 

u > u u u u u -0 .00000 

lation.10 It is apparent that the scatter in the data for 
|/| >1.0 (GeV/c)2 precludes any statement concerning 
a fit to a power-law formula. Finally, the data do not 
show evidence of a backward peak (about 180°), al
though at 3 GeV/c a slight rise in the cross section 
behind 90° cm. is not excluded. 

4.13 GeV/c 7r"p—-ir'p 

V. DISCUSSION OF THE DIFFRACTION PEAK 

A. Shape of the Diffraction Peak 

From Figs. 6 through 9, or from Fig. 10 one can 
observe that the diffraction peak is at least roughly 
exponential for |/| out to 0.8 (GeV/c)2. A purely ex
ponential diffraction peak such as that predicted by the 
simplest Regge theory (Sec. IIB3) would be described by 

da/dtt^ exp[A 0+A it]. (27) 

4.95 GeV/c ir"p—-irp 

FIG. 8. Elastic scattering differential cross sections for 4.13-
GeV/c v~p. The errors shown are statistical. An additional nor
malization uncertainty of ± 8 % is not indicated. The open circle 
at t = 0 is the optical theorem prediction. 

-t(G«V/c)* 

FIG. 9. Elastic scattering differential cross sections for 4.95 
GeV/c ir~p. The errors shown are statistical. An additional nor
malization uncertainty of ± 8 % is not indicated. The open circle 
at 2 = 0 is the optical theorem prediction. 
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TABLE V. Elastic scattering differential cross sections for 4.95-GeV/c ir~p: s = 10.19 (GeV)2, Ins = 2.32. 
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cosfl 

0.98 to 
0.96 to 
0.94 to 
0.92 to 
0.90 to 
0.88 to 
0.86 to 
0.84 to 
0.82 to 
0.80 to 

0.78 to 

0.74 to 

0.57 to 

0.38 to -

-0 .21 to -

-0 .55 to -

0.96 
0.94 
0.92 
0.90 
0.88 
0.86 
0.84 
0.82 
0.80 
0.78 

0.74 

0.57 

0.38 

-0.21 

-0.55 

-0.93 

(d<r/dti) (mb/sr) 

12.98 db0.65 
6.58 ±0.30 
3.06 ±0.22 
1.81 ±0.18 
1.20 ±0.14 
0.62 ±0.10 
0.26 ±0.07 
0.18 ±0.06 
0.068±0.030 
0.034±0.025 
0 0 0 0 + 0 . 0 1 4 u.uuu_0000 

"•"""-0.000 
0 0 0 0 - f 0.008 

0 0 0 0 + 0 . 0 0 2 u.uuu__0000 

0 0 0 0 + 0 . 0 0 8 

0 0 0 0 + 0 . 0 0 6 u . u u u _ 0 0 0 0 

-CGeV/c] 2 

at center of 
interval 

0.127 
0.212 
0.296 
0.381 
0.466 
0.550 
0.635 
0.720 
0.804 
0.889 

1.02 

1.46 

2.22 

3.87 

5.84 

7.37 

-ulGeV/cJ 
at center of 

interval 

6.17 

4.52 

2.55 

1.02 

l4T/(katot)J(da/dQ) 

0.4453±0.0223 
0.2257±0.0103 
0.1050±0.0075 
0.0621±0.0062 
0.0412±0.0048 
0.0213±0.0034 
0.0089±0.0024 
0.0062 ±0.0020 
0.0023±0.0010 
0.0012+0.00086 

0 0 0 0 0 + 0 - 0 0 0 4 8 

"•""""-0.00000 

0 0000+ 0 - 0 0 0 5 1 

"•""""-0.00000 

ooooo"1-0-00027 

"•""""-0.00000 
0 0 0 0 0 + 0 - 0 0 0 0 7 

"•""""-o.ooooo ooooo + 0 - 0 0 0 2 7 

"•""""-0.00000 
o o o o o + a o o o 2 ° "•""""-o.ooooo 

The test of the exponential nature of the diffraction 
peak is made quantitative in Table VI, where the 
parameters Ao and Ai of Eq. (27) are tabulated. These 
parameters were obtained by a weighted least-squares 

II 
\ 
bicj 
•ol-o 

~i i i i i r H 1 1 r 

O 4.13 G«V/c 

A 3.15 GeV/c 

+ 4.95 GeV/c 

Q* 

A o 

+ A 

.4 .6 .8 i.O 1.2 1.4 1.6 1.8 2.0 2.2 2 4 2.6 

-1 (GeV/cf 

FIG. 10. Normalized elastic differential cross sections for the 
ir~p data superposed on one graph. Error bars are not shown in 
order to clarify close-lying points. 

fitting procedure. For later use, (dcr/dK2)o==exp[\4o]] is 
also listed in Table VI. P(x2) is the probability of ob
taining a larger x2 than the x2 value obtained in the 
particular fit. The observation of the exponential nature 
of the diffraction peak is confirmed for the interval 
0<|* |<0.4 (GeV/c)2 for three of the sets of data; 
only the 3.15 GeV/c w~p shows a low P(x2)-

However, on extending the fits to values of |/| up 
to 0.8 (GeV/c)2, it is clear that the "tail" of the dif
fraction peak flattens out from (e.g., rises above) a 
purely exponential behavior. This is made more apparent 
from the values of Ai fitted to the data in the interval 
0.4< |*| <0.8 and 0< |*| <0.8, which are smaller than 
the values of Ai fitted only to the data within the in
terval 0< | /1 <0.4. Thus, the linear fit appears adequate 
for the latter range of 11 |, but is not as satisfactory for 
the larger range of \t\. Only for the 4.95-GeV/c data 

FIG. 11. Normal
ized elastic differen
tial cross sections for 
all data from this ex
periment plotted on 
a log-log scale in 
order to examine pos
sible power law de
pendence. Error bars 
are not shown. 
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TABLE VI. Values of the coefficients in the expression da/d£l = exp(Ao-\-Ait) fit to the data over 
different intervals of four-momentum transfer, /. 

System 

£iab (GeVA) 

minimum |/ | (GeVA)2 

0 < | / | < 0 . 4 (GeVA)2 

0 .4< | / | <0 .8 (GeVA)2 

0 < | / | < 0 . 8 (GeVA)2 

(d*/dQ)o (mb/sr) 
AQ 

A! (GeVA)"2 

P(x2) 

Ai (GeVA)"2 

P(x2) 

At (GeVA)-2 

P(x2) 

TT+p 

2.92 

0.082 

12.4 ±0.9 
2.52±0.07 
7.6 ±0.3 

0.20 

5.6 ±0.7 
0.40 

6.6 ±0.3 
«0.01 

7T p 

3.15 

0.090 

21.0 ±1.3 
3.04±0.06 
7.9 ±0.3 

0.02 

5.2 ±1.0 
0.05 

7.5 ±0.2 
«0.01 

7T p 

4.13 

0.104 

27.6 ±1.8 
3.32±0.07 
8.4 ±0.3 

0.20 

4.7 ±0.6 
0.40 

7.5 ±0.2 
«0.01 

7T p 

4.95 

0.127 

32.5 ±2.4 
3.48±0.07 
7.8 ±0.3 

0.10 

7.8 ±0.8 
0.90 

7.4 ±0.2 
0.30 

is P(x 2)>0.01 for the linear fit over the interval 
0 < | / | < 0 . 8 . 

By adding a quadratic term, the data can generally 
be fit much better over the larger range of 11 | , so that 
in Table VII fitted quantities are listed for the equation 

da/dtt=exp(Ao+A1t+A2t
2). (28) 

Figures 12 through 15 display the data plotted only to 
/ = —1.4 (GeV/V)2, with the curves of Eq. (28) corre

sponding to values of the coefficients from Table VII 
[ 0 < |*| <0.8(GeVA)2] plotted for comparison. 

While Eq. (28) is an empirical expression suggested 
by the discrepancies of Eq. (27), the plausibility of such 
an expression is also suggested by the arguments of 
Sec. I I . Thus, in the context of the simple Regge theory, 
a(t) may be nonlinear, ($(t) may contain a dependence 
other than exp[7/], or the contributions of other poles 
may modify the t dependence as in Eq. (17). 

From Tables VI and VII there appears to be little 

2.92 GeV/c ?r*p-*-7r+p 3.!5 GeV/c 7r"p-~7r P 

da- mb 
dft sr 

1 1 1 1 1 1 
1 1 

l_o 

h r \ 
F S 

\ 
^ 

^ 

F N 
r N 

F 

1 1 ! 1 1 ! 

! • ' \ ! ! ' ! ' J 

-

._ 

-

: 

1 - ^ : 

i i i i i i 
.6 .7 .8 

- t (GeV/c)2 
.5 .6 .7 .8 

- t ( G « V / c ) 2 

FIG. 12. Elastic scattering differential cross sections for 2.92- FIG. 13. Elastic-scattering differential cross sections for 3.15-
GeV/c Tr+p over a limited t range together with the fitted curve GeV/c ir~p over a limited / range together with the fitted curve 
da/dQ = exp(Ao+Alt+A2t

2) over the range 0 < |/ | <0.8 (GeVA)2. da/dtt = exp(A0+Ait+A2t
2) over the range 0 < | / | <0.8 (GeVA)2. 

The open circle at t = 0 is the optical model prediction. The open circle at / = 0 is the optical model prediction. 
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TABLE VII. Values of the coefficients in the expressions da/dil = txp (A Q-{-Ait-\-A2t2) fit to the 
data over different intervals of four-momentum transfer, /. 

System 

PM> (GeVA) 

0 < | / ] < 0 . 4 (GeVA)2 

0 < | / | < 0 . 8 (GeVA)2 

0 < | / | < 1 . 0 (GeV/c)2 

0 < | / | < 0 . 8 (GeV/c)2 

0 < | * | < 1 . 0 (GeVA)2 

0 < | / | < | * | m a x (GeV/c)2 

(dtr/dti)o (mb/sr) 
A0 
Al (GeVA)"2 

A 2 (GeVA)-4 

P(x2) 

(da/dti)o (mb/sr) 
AQ 
At (GeVA) 2 

A 2 (GeVA)"4 

P(x2) 

(d<r/dV)0 (mb/sr) 
^ 0 
>4i (GeVA)-2 

A 2 (GeVA)"4 

i>(x2) 

(da/dti)Q (mb/sr) 
4̂o 

^ i (GeVA)"2 

^ 3 (GeVA)"6 

P(x2) 

(d<r/dU)o (mb/sr) 
4̂o 

4 i (GeVA)"2 

4 8 (GeVA)"6 

P(x2) 

|*|max (GeVA)2 

(da/dti)o (mb/sr) 
^ 0 
ili (GeVA)"2 

^ 3 (GeVA)"6 

P(x2) 

TT+p 

2.92 

16.9 ±3.0 
2.8 ±0.2 

11.0 ±1.8 
7.2 ±3.8 

0.60 

14.2 ±1.4 
2.7 ±0.3 
9.2 ±0.7 
4.0 ±1.1 

0.20 

13.5 ±1.3 
2.60 ±0.09 
8.8 ±0.7 
3.2 ±1.0 

0.10 

12.5 ±1.0 
2.53 ±0.08 
7.8 ±0.4 

- 3 . 1 ±1.0 
0.05 

11.9 ±0.9 
2.48 ±0.07 
7.5 ±0.4 

- 2 . 1 ±0.8 
0.05 

4.1 
9.0 ±0.5 
2.19 ±0.05 
6.1 ±0.2 

-0.308±0.017 
«0.01 

7T p 

3.15 

14.8 ±2.2 
2.7 ±0.2 
5.2 ±1.4 

- 7 . 4 ±2.8 
0.15 

22.0 ±2.2 
3.1 ±0.1 
9.6 ±0.7 
2.9 ±1.1 

«0.01 

22.6 ±1.9 
3.12 ±0.08 
9.9 ±0.6 
3.2 ±0.8 

«0.01 

20.9 ±1.6 
3.04 ±0.08 
8.9 ±0.4 

- 3 . 0 ±1.2 
0.01 

20.4 ±1.3 
3.02 ±0.06 
8.7 ±0.3 

- 2 . 5 ±0.6 
«0.01 

4.35 
13.1 ±0.6 
2.57 ±0.05 
6.4 ±0.5 

-0.286±0.015 
«0.01 

TT-P 

4.13 

29.6 ±4.6 
3.4 ±0.2 
9.5 ±1.4 
1.4 ±2.7 

0.05 

35.7 ±3.5 
3.6 ±0.1 

11.5 ±0.7 
5.5 ±0.9 

0.20 

33.6 ±2.8 
3.51 ±0.08 

11.0 ±0.5 
4.7 ±0.7 

0.10 

30.9 ±2.3 
3.43 ±0.08 
9.7 ±0.4 

- 4 . 7 ±0.7 
0.30 

28.1 ±1.8 
3.34 ±0.07 
9.1 ±0.3 

- 3 . 2 ±0.5 
0.10 

5.9 
16.2 ±0.7 
2.78 ±0.05 
6.3 ±0.4 

-0.156±0.006 
«0.01 

41.2 
3.7 
9.7 
3.6 

34.3 
3.5 
8.1 
0.9 

32.6 
3.48 
7.6 
0.3 

32.8 
3.49 
7.7 

- 0 . 5 

31.6 
3.45 
7.4 
0.04 

23.6 
3.16 
6.3 

IT p 

4.95 

±10.6 
± 0.2 
± 2.3 
± 4.9 
0.40 

± 4.0 
± 0.1 
± 0.7 
± 1.0 

0.30 

± 3.4 
± 0.1 
± 0.7 
± 0.9 
0.40 

± 2.9 
+ 0.9 
± 0.4 
± 0.8 
0.30 

± 2.6 
± 0.08 
± 0.4 
± 0.6 
0.40 

7.4 
± 1.2 
± 0.05 
± 0.2 

- 0 . 1 0 5 ± 0.005 
«0.01 

choice between Eqs. (27) and (28) in the interval 
0 < | / | < 0 . 4 . However, the P(x2) is increased signifi
cantly for the 4.13 and 2.92 (GeVA) data by including 
the f term of Eq. (28) over the interval 0 < 11\ <0.8. 

The consistently poor fit of the 3.15-GeV/c data to 
Eqs. (27) and (28) is not understood. Unless a sys
tematic error entered into the data, either there is an 
unusual statistical fluctuation in some data points or 
the physics at this energy is basically different. Com
parison of the data curves and the A parameters reveals 
that the 3.15-GeV/c data is at least qualitatively 
similar to the other data. 

Average values of A i and A 2 can be found by taking 
the values of the A parameters for Eq. (28) fitted over 
the interval 0 < 11\ <0.8 as the most significant, and by 
noting that there are no significant differences between 
the data or the values of A\. The average value of Ax 
for the four curves is 9.6 (GeVA)""2, a n d that of A 2 is 
3.3 (GeVA) -4- Since the P(x2) of obtaining the experi
mental values of Ai and A2 from these average values is 
0.05 and 0.02, respectively, we cannot say that all the 
curves are characterized by the same Ai and A2. But 
we can use these average values for comparison with 

the average Ai of 7.9 (GeVA) - 2 obtained from Table 
VI for the interval 0 < | * | < 0 . 4 . These two averaged 
fits give 

0 < | / | < 0 . 4 (GeVA)2; 

(da/dQ) = (da/dtt)o exp[7.9/], 

0 < | * | < 0 . 8 (GeVA)2; 
{da/dQ)= (da/dti)o exp[9.6/+3.3/2], 

(29) 

which serves to emphasize further that there is a sub
stantial deviation from the simple exponential when 
|*| is extended to 0.8 (GeVA)2-

Of course, the quadratic terms may still be important 
at smaller \t\ ; our measurements do not go to small 
enough angles to allow exploration of this possibility. 

B. The Forward Scattering Cross Section 

Table VIII lists the square of the imaginary part of 
the forward scattering amplitude, (&cetot/47r)2, and the 
forward scattering cross sections (da/dQ)o obtained by 
the various fitting methods of Sec. VA. The errors given 
with the (da/dQ^o quantities are derived from the 
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TABLE VIII. Total cross sections, <rt, values of (k<rt/4:ir)2, and values of (da/dti) at 0° extrapolated according to the various fits of 
Tables VI and VII. (The ratio, (R, of the extrapolated value of (da/dti)o to (kat/^ir)2 is tabulated in each instance. The total cross sec
tions are taken from Refs. 26 and 27.) 

System 

piah (GeV/c) 

<rtotai (mb) 
k (cm"1) 

( W 4 T T ) 2 (mb/sr) 
normalization uncertainty 

exp(Ao+Ait) 
0< | / | <0 .4 (GeVA) 2 

exp(^0+^i^+^2^2) 
0< | / |<0 .4 (GeVA) 2 

exp(AQ+Ait+A2P) 
0 < | / | < 0 . 8 (GeV/c)2 

(d<r/dti)0 

(da/dti)o 
<R 

(da/dQ)0 

(R 

(mb/sr) 

(mb/sr) 

(mb/sr) 

ir+p 

2.92 

28.7 ±0.5 
0.549 X1014 

15.8 ±0.5 
± 3 0 % 

12.4 ±0.9 
0.79±0.24 

16.9 ±3.0 
1.07±0.37 

14.2 ±1.5 
0.90±0.29 

7T p 

3.15 

31.3 ±0.5 
0.574X1014 

20.4 ±0.7 
±8% 

21.0 ±1.3 
1.03±0.11 

14.8 ±2.2 
0.72±0.17 

22.0 ±2.2 
1.08±0.14 

TV p 

4.13 

29.9 ±0.5 
0.668X1014 

25.2 ±0.8 
± 8 % 

27.6 ±1.8 
1.09±0.11 

29.6 ±4.5 
1.17±0.20 

35.7 ±3.4 
1.41±0.18 

TV p 

4.95 

29.1 ± 0.5 
0.739X1014 

29.2 ± 1.0 
± 8 % 

33.2 ± 2.7 
1.14± 0.14 

41.2 ±10.1 
1.41 db 0.35 

34.3 ± 3.9 
1.18± 0.14 

least-squares fitting procedure. At each energy an 
estimated over-all normalization uncertainty is also 
listed. For the ir+p data this error is large and precludes 
any meaningful comparison. The ratio (R= (d<r/dQ)$/ 
(&<rtot/4x)2 include the errors on each quantity and the 
normalization error. 

First we observe that the (da/dtyo values at a par

ticular energy vary according to the fitting method, the 
"quadratic" fits usually giving a higher value than the 
"linear" fit. Considering just the irp data, we next 
observe that in eight out of nine cases the ratio (R 
= (da/dtt)o/(katot/4:w)2 is greater than 1.00, indicating 
a real part to the forward scattering amplitude. Of 
course, in each case the error is such as to allow the 

4.13 G*eV/c 7r""p-*-7r"p 4.95 GeV/c 7r"p—-ir~p 

.5 .6 .7 
-I (GeV/c)2 

FIG. 14. Elastic scattering differential cross sections for 4.13-
GeV/c ir~p over a limited t range together with the fitted curve 
da/dti^expiAo+Ait+Azt2) over the range 0 < |*| <0.8 (GeV/c)2. 
The open circle at t—Q is the optical model prediction. 

FIG. 15. Elastic scattering differential cross sections for 4.95-
GeV/c ir~p over a limited / range together with the fitted curve 
do-/dO = expG4o-Mi*+^2*2) over the range 0 < |*| <0.8 (GeV/c)2. 
The open circle at / = 0 is the optical model prediction. 
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TABLE IX. Total cross sections, at, and total elastic cross sections, <reiastic, where clastic is the integral under the data points plus the 
contribution from 2 = 0 to the first data point taken according to the fits of Tables VI and VII. [In the case of the w+p data, where 
normalization is less certain, a value of elastic is also given in which the data are scaled so that the linear fit passes through the optical 
theorem point (k<rt/4:ir)2.~] 

System 7T+p IT p IT p TT p 

£iab (GeV/c) 

o-totai (mb) 

<Teiastic (mb) f or : 
1. expG40-h4iO fit: 

0 < | * | < 0 . 4 (GeV/c)2 

ffelastic/Ctotal 

2. exp(ylo+^i*+^2*2) fit: 
0 < | / | < 0 . 8 (GeV/c)2 

O'elastic/ctotal 

3. fit to optical point 
expC40-Mi*) 
0 < | * | < 0 . 8 (GeVA)2 

^"elastic/0'total 

4. Normalization shifted to 
allow linear fit to pass 
through optical point 
0"elastic/0"total 

2.92 

28.7±0.5 

4.6±1.5 
16% 

4.8±1.0 
16.7% 

5.1=1=1.0 
17.8% 

5.9=1=1.0 
20.6% 

3.15 

31.3=1=0.3 

6.2±0.7 
19.8% 

6.4=1=0.8 
20.4% 

6.1±0.7 
19.5% 

4.13 

29.9±0.5 

5.9±0.6 
19.7% 

6.3±0.8 
21.0% 

5.6=1=0.6 
18.7% 

4.95 

29.1±0.5 

6.5±0.7 
22.7% 

6.5±0.8 
22.4% 

6.1=1=0.7 
21.0% 

ratio to be 1.00. A weighted average over the data and 
over the three fitting methods results in the following 
values for the ratio (R: 

(R=1.20db0.05 for 4.13 and 4.95 data combined, 

(R= 1.12±0.04 for all w~p data. 

Therefore, if the differential cross section behaves as 
an exponential in / for small | / | , the | R e / ( 0 ) | 2 / 
| Im/(0) |2 may be about 0.1 to 0.2 in this energy range. 
In order for the | Re/(0) |2 to be smaller, the differential 
cross section must flatten out a little for very small \t\. 

If the method of Cronin25 is followed, so that single-
integral dispersion relations are used to calculate the 
value of [Re/(0)] 2 , one finds that the [Re/ (0) ] 2 aver
aged over this momentum range is about 0.5 mb. As 
this yields (R====1.017, the measured (R= 1.12+0.04 is 
too high by 2.5 standard deviations. 

This can be interpreted in three ways. First, the nor
malization of the data may be wrong. Second, the ex
ponential form, and particularly the use of the quadratic 
term, may be wrong for very small | / 1 . Thus, the linear 
exponent gives an average (R of 1.09+0.06, which is 
lower than the average (ft obtained when all the fitting 
methods are used. The third interpretation is that the 
foward dispersion relations are wrong, but this in
volves such a fundamental relationship in field theory 
that much stronger evidence would be required than is 
presented here. Therefore, our preference for an ex
planation goes first to a systematic error in the nor
malization of the differential cross section and second 
to the possibility of an incorrect form having been 
used for da/dQ, at very small | / 1 . 

I t may be noted that the ratio (ft appears, from the 
data presented here, to increase monotonically with 
incident pion energy. This same trend is consistent with 
the value of (ft determined in preliminary analysis of 
2 GeV/c if~p data taken at the same time as these 
data, and this trend is also consistent with the results 
of Brandt et al.s 

C. The Total Elastic Cross Section 

In Table IX we present the total elastic cross section 
according to the various fitting methods used to ex
trapolate the data to small angles. In each case the 
elastic cross section is evaluated from the experimental 
data points for all values of t greater than the minimum 
observable. The fitted curves are used only to estimate 
the cross section between these minimum measured 
points and the point / = 0 . We have also included in 
Table IX an elastic cross section based on extrapolation 
to the optical theorem point at t~0. 

As a result of more careful normalization, extrapola
tion, and background subtraction, the elastic cross sec
tions of Table I X average a few percent lower than the 
preliminary values given earlier. The total cross sec
tions given are from the smooth curve of Diddens et al.n 

These values average slightly higher than the ones ob
tained earlier27; consequently, the ratios of elastic to 
total cross sections (averaging about 20% for the TT~ 
data) appear to be in somewhat closer agreement with 
the optical model proposed by Serber10 (0.185 for ??= 1) 

26 J. W. Cronin, Phys. Rev. 118, 824 (1960). 

26 A. N. Diddens, E. W. Jenkins, T. F. Kycia, and K. F. Riley, 
Phys. Rev. Letters 10, 262 (1963). 

27 M. J. Longo and B. J. Moyer, Phys. Rev, Letters 9, 466 
(1962). 
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than was indicated earlier. But from Table IX it is clear 
that, in addition to normalization uncertainties, the 
exact value of the total elastic cross section is sensitive 
to the manner in which we extrapolate to / = 0. These 
data must be interpreted accordingly. 

D. The Simple Optical-Model Fit 
to the Diffraction Peak 

The forward part of the diffraction peak was used 
to evaluate R and (1 — a) in the simple optical model 
for a partially absorbing nucleus. A weighted least-
squares fit was used to evaluate R from the equation 

da & W rJiikRsind)-] 

— ( * ) = — 4 • 
<Kl 16TT2 L kRsinS J 

Then the quantity (1 —a) was found from the equation 

otot=27r(l- a)R\ 

The results are given in Table X. The maximum kR sin# 

TABLE X. Nuclear radius (ft and opacity (1 —a) calculated from a 
simple optical model to fit to the data at each energy. 

System ir+p IT p ir p -K p 

£iab (GeV/c) 2.92 3.15 4.13 4.95 
kR 6.25:4=0.3 6.25±0.3 7.05±0.3 7.25±0.3 
#(10-1 3cm) 1.14±0.05 1.09±0.05 1.05=1=0.05 0.98±0.04 
{I-a) 0.35=b0.04 0.42±0.04 0.43±0.04 0.47±0.04 
P(x2) 0.04 <0.01 0.10 0.05 

used was about 3.0, corresponding to | / | of about 0.3 
to 0.4 (GeVA)2- Only the most forward points were 
used because the simple optical model with a uniform 
opacity drops below the experimental points for larger 
angles, making it impossible to get any meaningful fit. 
For example, if at 2.92 GeVA the next two points are 
also used to obtain a value for kR, the kR changes from 
6.25 to 6.1 and the minimum x2 increases from 8.4 to 
17.0. As there are 3 degrees of freedom, this corre
sponds to a much worse fit. 

The values of R are quite similar to those found at 
some other momenta in ir~p elastic scattering. Thus, at 
1.43 GeVA, R= 1.08X10"13 has been reported28; and at 
5.17 GeVA, i?=1.04X10~13 has been reported.29 Our 
average value for R for the ir~p system is (1.04=fc0.03) 
X10 - 1 3 cm. The probability of these values having 
come from the same true value is 20%. 

The optical model prediction of Serber10 cannot be 
tested easily by our differential cross-section data; the 
statistical accuracy of the data for 11\ > 1.0 (GeVA)2 is 
poor, and it is only for these large 111 values that sig
nificant deviations between an exponential- and a 

28 M. Chretien, J. Leitner, N. P. Samios, M. Schwartz, and 
J. Steinberger, Phys. Rev. 108, 383 (1957). 

29 R. G. Thomas, Phys. Rev. 120, 1015 (1960). 

power-law fit can be expected. Yet our data are suffi
cient to demonstrate that the differential cross sections 
for large | t1 fall more rapidly for 4 and 5 GeV/c than 
for 3-GeV/c scattering. This is in disagreement with 
an optical model containing no energy dependence. All 
the 7T~ data are plotted in Fig. 11 on a log-log scale. 

E. The Variation of the Diffraction-Peak Width 
and Shape with Energy 

While the simplest application of the Regge theory 
to the diffraction peak through Eq. (19) may be in
applicable in principle, the exponential shape of the 
peak allows one to use the parameterization of Eq. (20) 
as a rough test of the variation of the diffraction-peak 
width with energy. In a previous paper,1 Ai was taken 
from our data and other published results, and it was 
shown that there was no statistically significant evi
dence for a charge of A i with energy (specifically with 
Ins) from 3 to 16 GeV. The same conclusion holds for 
all the fits we have tried. We find no systematic change 
in the various sets of exponential parameters with s, 
and, specifically, we see no shrinkage of the diffraction 
peak for small | / 1 . We may now compare our average 
Ax of 8.0±0.2 (GeVA)"2 for the 0.0< \t\ <0.4 (GeVA) 
interval with the recent measurements of Foley et al.2 

of w~p elastic scattering in the 7- to 17-GeV/c region 
and with the measurements of Brandt et al.8 at 10 
GeVA. Over the \t\ interval 0.2 to 0.4 (GeVA)2, the 
Brookhaven published graphical data yield ^4i=7.7 
(GeVA)~2, and the Brandt data yield 4 i = 7 . 5 ± 0 . 3 
(GeVA)2. The excellent agreement demonstrates that 
the statement of no shrinkage made by Foley et al. can 
be extended down to 3.0 GeVA- The constancy of Ai 
over this entire energy range is rather remarkable. 

Our three-parameter fit over the interval 0 < 11\ <0.4 
(GeVA)2 yields average values of ^ i = 8 . 9 ± 1 . 0 and 
i42=1.2d=1.8; over the interval 0 < | / | < 0 . 8 (GeVA)2 

it yields ^4i=9.6±0.4 and T 4 2 = 3 . 3 ± 0 . 5 . For this same 
interval at 10 GeVA, Brandt et al. give Ai= ll.4zfcl.07 
and ^2=8.9=fc2.8. Since these 10-GeVA parameters are 
different from both sets of ours, there seems to be a 
definite change of shape of the diffraction peak over 
the 3- to 10-GeVA region, although the average slope 
(using just a two-parameter fit) does not change over 
this energy interval. While some of the difference be
tween the quadratic coefficients at 5 and 10 GeV/c 
may be due to the data for very small \t\ at 10 GeVA, 
the deviations from an exponential fit between the two 
sets of data at large | i | appear significant. 

The original shrinkage concept in the Regge theory 
came from the energy dependence of the linear term in 
the exponent as shown in Eq. (20). In an attempt to 
find a more subtle type of energy dependence, we can 
write a generalization of Eq. (20), i.e., an expansion 
of Eq. (18) as follows: 

d<r/dt= (da/dt)t=o exp[(Yi/+72*2H ) 
+ 2(alt+a2P+-')lns]i. (30) 

ll.4zfcl.07
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Now there is no evidence for a^O in ir~p elastic scat
tering and yet it is strongly intuited that the slope of 
the Pomeranchuk trajectory at / = 0 , (da(t)/dt)t=o, 
should be positive.14 According to this idea, therefore, 
if « i = 0 , a2 should also be quite small and the first 
substantial a term would be a3, reducing Eq. (30) to 

da/dt= (da/dt)Q exp[(7iH-72*H )+2azt* Ins]. (31) 

To see if Eq. (31) might be applicable, the data have 
been fitted to 

dv/dt=exp[A o+A rf+A 3*
3] (32) 

over the interval 0 < | * | < 0 . 8 (GeV/c)2. The t2 term 
was left out so that the statistical uncertainty in the A 3 

term would not be too large. The parameters are given 
in Table VII. The result is similar to the quadratic fit 
in that there is no major change in the P (x2); and the 
4.95 (GeV/c) A 3 is smaller than the lower momentum 
Az values, just as the 4.95 (GeV/c) A2 is smaller than 
the lower momentum A2 values. Thus, there is no 
evidence either for or against the use of the A%fi term 
instead of the A2t

2 term. 

F. The Diffraction Peak and Large-Angle Scatter
ing as a General Function of s and t 

In this section we shall treat more than the diffrac
tion peak in order to see how all da/dil behaves as a 
general function of s and t. First, the results are pre
sented in graphical form in Fig. 16, which goes out to 
values of | * | ^ 2 (GeV/c)2. At this |*| the data change 
from giving a value for the cross section to giving 
primarily upper limits. In Fig. 16, (47r/k<Ttot)

2(d<r/dti), 
which we shall refer to as the normalized differential 
cross section, is plotted versus s for various values of t. 
The errors include the statistical error from each 
measured point propagated through the interpolation 
process and the normalization error, which is equivalent 
to an uncertainty in (da/dti). At t= —0.1, —0.3, —0.5, 
and —0.7 (GeV/c)2, there is generally a slight rise in 
the normalized differential cross section with increasing 
s. As discussed in Sec. VB, this same effect produces 
an increasing ratio of the extrapolated (d<r/dQ)o to the 
optical theorem (d<r/dti)o and can easily be due to an 
energy-dependent error in the normalization. If the 
normalization is correct, then this effect is a slight 
broadening of the diffraction peak without a change in 
the slope. By taking forward scattering dispersion 
theory as correct, one implies that the shape of the 
differential cross section at very small \t\ is changing 
throughout the region. 

For £= —1.0 and —2.0 (GeV/c)2, the normalized 
differential cross section is clearly decreasing with s. 
At t— —1.0 it decreases by a factor of 2 in s, going from 
6.8 to 10.2 (GeV/c)2; and at t= — 2.0 it decreases by a 
factor of about 5 over the same interval. 

For another means of studying the entire differential 
cross section as a function of s and t, we have made a 

t = - 0 . f T 

. J -
+ 
-t-
l 

FIG. 16. Normalized differential elastic scattering cross sec
tions for the three iv~p data sets plotted versus Ins, with straight 
lines fitted through points of the same four-momentum transfer. 
The points are interpolated from the data of Tables III , IV, and 
V, with error bars indicated which include statistical errors of the 
data, as well as interpolation and normalization uncertainties. 

weighted least-square fit for the entire range of \t\ 
to the equation 

da/dtt= e x p O o+A it+A 2t
2+A ^+A 4 / 4 ] . 

The results are presented in Table XL Except for 
the 3.15-GeV/c data, the equation is a fair fit. In 
contrast, Eqs. (28) and (32), which use only three 
parameters, are very bad fits in all cases. Comparing 
the different sets of data, one finds as before that the A 
parameters are roughly the same for all the data, but 
that the spread is outside statistics. In particular, we 
observe that 

A1>A2>Az>Ai, 

so that for 11 \ < 1 (GeV/c)2 we can think of this as a 
converging expansion of some function of t. Although 
we have produced a reasonable fit to all the data out 
to large 11 \ values, present theory provides no way to 
interpret the parameters. At most, one can say that 
these parameters are certainly allowable in more com
plex forms of the Regge theory. 

In comparing the graphical and parametric methods 
of examining the general s and t dependence, it is 
interesting to note that as the incident pion momentum 
increases from 3.15 to 4.95 GeV/c, A2, Az, and A A all 
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TABLE XL Values of the coefficients in the expression da/dSl^zxp^AQ+Ait+Azft+Azft+A^). 
Fit to the data over the ranges of four-momentum transfer / indicated. 

System 

/'lab (GeV/c) 
A, 
Ax (GeV/c)-2 

A* (GeV/c)"4 

A s (GeVA)-6 

A4 (GeV/c)"8 

P(x2) 
Maximum |t| (GeV/c)2 

w+p 

2.92 
2.65±0.09 
9.3 ±0.7 
4.4 ±1.2 
0.7 ±0.6 
0.02±0.08 

0.20 
4.1 

IT p 

3.15 
3.25±0.08 

11.2 ±0.6 
6.2 ±1.1 
1.5 ±0.5 
0.13±0.08 

«0.01 
4.4 

x p 

4.13 
3.50±0.08 

11.0 ±0.5 
5.5 ±0.7 
1.2 ±0.2 
0.09±0.02 

0.15 
5.9 

7T p 

4.95 
3.64±0.08 
8.9 ±0.5 
2.0 ±0.6 
0.1 ±0.6 
0.00±0.01 

0.05 
7.4 

decrease. Now for | / | > 1 . 0 (GeV/c)2, these are the 
important parameters; consequently, the large \t\ 
value scattering will tend to decrease as s increases, as 
is apparent in Fig. 15. In addition, the parametric fits 
demonstrate that the decrease in the cross section with 
increasing energy is probably not due to a chance 
cancellation of the odd and even powers of t in the ex
ponential, but rather to a decrease in all terms. 

VI. DISCUSSION OF LARGE-ANGLE SCATTERING 

A. Shape of the Large-Angle Differential Cross 
Section and Existence of a Backward Peak 

From the tables and graphs already presented it is 
clear that the general character of the differential cross 
sections is a roughly exponential drop to 1 or 2 (GeV/c)2 

four-momentum transfer, with the cross section at 
larger \t\ either flattening or (at higher energies) con
tinuing to fall. At 4.13 and 4.95 (GeV/c) our data 
primarily represent upper limits for | /1 > 2 (GeV/c)2. 
Thus, our entire data can be represented in terms of 
/-channel processes through more complex application 
of Regge theory or through some alternative. In par
ticular, it does not appear necessary to invoke u-
channel processes (e.g., baryon exchange) in order to 
interpret this experiment. 

We may use our upper limits to the cross section at 
large angles to set limits to the width or height of a 
possible backward peak in the differential cross section. 
Our data extend only to cos0= —0.93 and are sensitive 
to a differential cross section of the order of 5X10~3 

mb/sr. The limits placed on large-angle scattering by 
the present data and by other published data are sum
marized in Table XI I , where da/dtt for 0 > cos0> —1.0, 
da/dQ, for the backward steradian, and the maximum 
observed angle (center of mass) from each experiment 
are tabulated. As an example, one may postulate a 
backward peak which has the same width as the forward 
diffraction peak and is given by 

da/dtt=exp[Ao-{-Ai(u—Uo)~], 

where UQ is the value of u at 180° and the differential 
cross section is a function of 0'=18O°—0. Our data 
indicate that in this case a backward peak at 4.13 
GeV/c would have to be less than 1/24 the height of 
the forward peak. 

The broader peak suggested by Singh and Udgaonkar20 

from the strip approximation is more strongly limited 
by the data, but the slightly narrower peak obtained by 
the optical-model approximation applied to 180° (see 
Sec. I I and the Appendix) is not as strongly limited, 
in view of the maximum angles observed in this experi
ment. Our data suggest that such a peak would have to 
be less than 10% of the forward peak. As stated in Sec. 
I I , neither the virtual nucleon and nucleon isobar ex
change theory nor the Regge theory of the backward 
peak give a width prediction, so we cannot set a limit 
on those particular theoretical predictions. 

The bubble-chamber measurements (which do extend 
to 180°) in ir~p set limits of 30 /xb/sr, and in ir+p set 
limits of 14 to 90 /xb/sr over our energy range; these 
limits are consistent with our data. Since the diffraction 
peak is completely contained in the first steradian in 
this energy range and totals about 6 mb, the total 
elastic cross section in any backward peak is, roughly, 
less than 1/200 of the total elastic cross section for T~p 
and less than 1/70 for ir+p. Therefore, in comparison 
with the forward peak, the height of the backward peak 
is either very small or its width is very narrow. The 
only data on this point come from the experiment on 
ir+p by Kulakov et al.so using counters at 3.14 and 4.6 
GeV/c. At 180° they found de/dtt of 0.92=b0.47 and 
0.38±0.24 mb/sr. 

This experiment only measured da/dQ, over a solid 
angle of 0.002 sr about 180° in the center of mass. 
From other measurements listed in Table XII , it is 
highly probable that the total backward elastic peak is 
less than 30 ph. To reconcile these two numbers one 
must postulate a very narrow backward peak, mostly 
lying behind cos0= -0 .985 to -0 .995 . 

The theoretical interpretation of such a peak is 
obscure. I t is too narrow to be explained by the back
ward peak arising from the optical model. I t is also too 
narrow to be treated with present Regge theory, be
cause it lies in the region shown by Table I to corre
spond to small cos0w. I t is too small for the simple 
nucleon exchange calculation given by Cook et al.,7 al
though it may fit the unpublished calculation of 
Pomeranchuk. 

30 B. A. Kulakov et al., in Proceedings of the 1962 Annual Inter
national Conference on High-Energy Physics at CERN (CERN, 
Geneva, 1962), p. 584. 
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TABLE XII. Data for ir~p elastic scattering in the backward (cm.) hemisphere, and in the steradian centered at 0=1 80° 
from various experiments including the present one. (All cross sections are in /jb/sr.) 

System 

if~p 
TT• p 

7T~p 

TC~p 
ir~p 
TT p 

TT~p 
TT~p 
TT~p 

TT+p 

TT+p 
TT+p 
TT+p 
TT+p 
TT+p 
TT+p 
TT+p 

TT+p 
TT+p 

Incident pion labora
tory momentum 

(GeV/c) 

1.43-1.51 
2.0 

2.5 

2.8 
2.8 
3.15 

4.13 
4.95 

7.0-8.0 

1.5 

1.69 
2.0 
2.5 
2.8 
2.8 
2.92 

7.0-8.0 

3.14 
4.6 

/ub/sr 
fxb/sv for the last stera

dian in cm. system 
-l .O<cos0<O - l .O<cos0< -0.841 

300± 60 
150+ 30 

- 50 
100+ 20 

- 50 

lOOdb 40 
4 + 10 

- 3 
< 5 
< 6 

760±150 

320± 30 
200± 60 
70± 30 

6 ± 6 
18± 11 

300±150 

<30 

8 + 10 
- 8 

< 5 
<10 
<30 

650+600 
- 3 0 0 

250±150 
40± 40 
80± 60 

<14 

13=fc 11 
<90 

at 180° <k/dfo=920±470/ib/sr 
at 180° d*/da=3&0±240 Mb/sr 

"max 

(cm.) 

180° 
152° 

149° 

180° 
180° 
157° 

158° 
158° 
180° 

158° 

164° 
158° 
162° 
180° 
180° 
157° 
180° 

Reference 

»,b 

b 

b 

c 

d 

This exp. 

This exp. 
This exp. 

e 

f 

g 
f 

f 

b 

i 

This exp. 
e 

J 
i 

* M. Chretien, J. Leitner, N. P. Samios, M. Schwartz, and J. Steinberger, Phys. Rev. 108, 383 (1957). 
*> K. W. Lai, L. W. Jones, and M. L. Perl, Phys. Rev. Letters 7, 125 (1961). 
« Yu. D. Bayukov, G. A. Leskin, and Ya. Ya. Shalamov, Zh. Eksperim. i Teor. Fiz. 41, 2016 (1961) [translation: Soviet Phys.—JETP 14, 1432 (1962)]. 
d L . P. Kotenko, E. P. Kuznetsov, G. I. Merzon, and Yu. B. Sharov, Zh. Eksperim. i Teor. Fiz. 42, 1158 (1962) [translation: Soviet Phys.—JETP 15, 

800 (1962)]. 
« R. A. Aripov, V. G. Grishen, L. V. Sil'-vestrov, and V. N. Strel'tsov, Zh. Eksperim. i Teor. Fiz. 41, 1330 (1961) [translation: Soviet Phys.—JETP 

14, 946 (1962)]. 
fV. Cook, B. Cork, W. R. Holley, and M. Perl, Phys. Rev. 130, 762 (1963). 
g J. A. Helland, University of California Radiation Laboratory Report UCRL-10378, 1962 (unpublished). 
h Yu. D. Bayukov, G. A. Leskin, D. A. Suchkov, Ya. Ya. Shalamov, and V. A. Shebanov, Zh. Eksperim. i Teor. Fiz. 41, 52 (1961) [translation: Soviet 

Phys.—JETP 14, 40 (1962)]. (This is a -K~-\-n —» ir~-\-n measurement and charge independence is assumed.) 
| Yu. D. Bayukov, G. A. Leskin, and Ya. Ya. Shalamov, Zh. Eksperim. i Teor. Fiz. 41, 1025 (1961) [translation: Soviet Phys.—JETP 14, 729 (1962)]. 
i B. A. Kulakov et al„ in Proceedings of the 1962 Annual International Conference on High-Energy Physics at CERN (CERN, Geneva, 1962), p. 584. 

It would seem wise to wait for further experimental 
elucidation of this peak before developing the theory 
further. The measurement of large-angle elastic scatter
ing at these high energies is made difficult by the 
problem of inelastic contamination, and the counter 
technique employed by Kulakov et al.m seems particu
larly subject to this kind of error. 

B. Energy Dependence of the Large-Angle 
Scattering 

On the basis of the data in Table XII, only qualita
tive statements can be made regarding the energy de
pendence of the elastic cross sections in the backward 
hemisphere. Below 2.5-GeV/c pion momentum, the 
existence of resonances in the total pion-nucleon cross 
section has been established; these resonances are 
probably the most important determinants of magni
tude and shape for the large-angle cross sections near 
the resonance energies. 

The statistical model18 makes no predictions about 
the angular distributions of the elastic scattering 
through this channel except that any distribution should 
be symmetric about 90° cm. The energy dependence of 

large-angle scattering predicted by the statistical model 
is an exponential multiplied by a factor such as s~x 

to give the probability of forming an intermediate state. 
From the Regge theory of the / channel, the a{t) for all 
Regge trajectories should approach — 1 for sufficiently 
negative t. This would give rise to a differential cross 
section at large 11 | such that da/dQ oc s~A in this region. 
The data at 3 GeV/c and the upper limits given for the 
higher energies are consistent with either prediction, 
e.g., that the cross section in the backward hemisphere 
falls rapidly to very low values with increasing energy. 

VII. COMPARISON OF PION-PROTON WITH 
PROTON-PROTON ELASTIC SCATTERING 

Qualitatively, the pp differential elastic scattering 
resembles the w^-p data presented above. A detailed 
comparison, however, reveals significant differences be
tween the two processes. Available pp data in the same 
energy range as our wp data have been fit in the same 
manner as the wp data. In Table XIII, the coefficients 
for the fit 

d*/da=explAQ+Aif}-} 0< | i | <0.4 (GeV/c)2 (33) 
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TABLE XIII . Values of the coefficients in the expression da/dQ = exp(Ao+Axt) in the range of four-momentum transfer 0 < | / | <0. 
(GeV/c)2 and the expression da/d£l = exp(A0+AitJrA2t2) in the range of four-momentum transfer 0 < | / | <0.8 (GeV/c)2 for proton-
proton elastic scattering. 

Proton kinetic energy (GeV) 
,? (GeV)2 

Ins 

0 < | / | < ( 0 . 4 ) 

0 < | / | < 0 . 8 

A0 

P(x)2 

A0 
Ax 
A2 
P(x2) 

6.15 
15.1 
2.71 

4.0±0.15 
7.4±0.7 

0.10 

4.2±0.8 
9.4±2.0 
3.4±3.2 

0.15 

4.40 
11.8 
2.47 

3.9±0.1 
7.5±0.5 

0.50 

4.0db0.14 
8.8=b0.8 
3.8±0.8 

0.15 

2.87 
8.9 
2.19 

3.7±0.06 
7.7±0.3 

0.01 

3.9±0.06 
8.9±0.8 
3.7±0.3 

0.15 

2.85 
8.9 
2.19 

3.8±0.06 
7.0±0.3 

0.99 

3.8±0.07 
6.9±0.5 
0.6±0.6 

0.05 

2.24 
7.7 
2.04 

3.4±0.09 
5.5±0.3 

0.99 

3.8±0.15 
8.2=L0.7 
3.6±0.7 

0.30 

2.10 
7.5 
2.00 

3.5±0.05 
6.9db0.3 

0.80 

3.6±0.06 
8.2db0.5 
3.6±0.7 

0.20 

2.00 
7.3 
1.99 

3.5±0.05 
6.3±0.2 

0.40 

3.6±0.06 
6.7±0.5 
1.1=1=0.7 

0.20 

1.35 
6.1 
1.81 

3.1 ±0.04 
5.9=1=0.2 

0.90 

Reference 

a B. Cork, W. A. Wenzel, and C. W. Causey, J r . , Phys . Rev. 107, 859 (1957). 
f>T. Fujii, G. B. Chadwick, G. B. Collins, P . J . Duke , N . C. Hein, M. A. R. Kemp, and F . Turko t , Phys . Rev. 128, 1836 (1962). 
° G . A. Smith , H . Courant , E . C. Fowler, H . Kraybil l , J . Sandweiss, and H . Taft, Phys . Rev. 123, 2160 (1961); G. A. Smith, thesis, Yale, 1962 

(unpublished). 
d W . F . Fickinger, E . Pickup, D . K. Robinson, and E. O. Salant , Phys . Rev. 125, 2082 (1962); W. F . Fickinger (private communicat ion) . 

and 

da/da = exp[> 0+A J+A 2t
2~]; 

0 < | * | < 0 . 8 (GeV/c)2 (34) 

are given for the pp data. Figure 17 compares A\ for 
the two processes (from the linear fit) versus s, where 
straight lines of the form A1 — C1+C2 Ins have been fit 

n—r—1—1—1—1—1—1—1—1—1—1—1—1 1 1—1 
» p This Exp. § W Reference a £ 

Reference eg to f 

uA «f 
»* 'i 

.1 „ I L_J L_J I I 1 I I I I 1 L-

FIG. 17. The coefficient Ai(GeV/c)~2 versus Ins from linear 
fits to pp and irp elastic-scattering data according to da/dQ 
= exp(A0+A1t) in the range 0 < |*| <0.4 (GeV/c)2. The straight 
lines are fitted to the plotted points for pp and irp scattering con
sidered separately. 

References: 
(a) See B. Cork, W. A. Wenzel, and C. W. Causey, Jr., Phys. 

Rev. 107, 859 (1957); (b) T. Fujii, G. B. Chadwick, G. B. Collins, 
P. J. Duke, N. C. Hein, M. A. R. Kemp, and F. Turkot, Phys. 
Rev. 128,1836 (1962); (c) G. A. Smith, H. Courant, E. C. Fowler, 
H. Kraybill, J. Sandweiss, and H. Taft, Phys. Rev. 123, 2160 
(1961); G. A. Smith, thesis, Yale, 1962 (unpublished); (d) W. F. 
Finkinger, E. Pickup, D. K. Robinson, and E. O. Salant, Phys. 
Rev. 125, 2082 (1962); W. F. Finkinger (private communication); 
(e) L. Bertanza et al., Nuovo Cimento 19, 467 (1961); (f) K. W. 
Lai, L. W. Jones and M. L. Perl, Phys. Rev. Letters 7, 125 (1961); 
(g) M. Chretien, J. Leitner, N. P. Sarnios, M. Schwartz, and J. 
Steinberger, Phys. Rev. 108, 383 (1957); (h) V. Cook, B. Cork, 
T. F. Hoarg, D. Keefe, L. T. Kerth, W. A. Wenzel, and T. F. 
Zipf, Phys. Rev. 123, 320 (1961). 

to the pp data and to the irp data. A clear increase of 
A\ with s is evident for the pp data, such that A\ 
would have the same value for icp and for pp scattering 
at s of about 16 (GeV)2. In Fig. 17 data fit to ir~p scat
tering experiments at lower energies are also included 
where the corresponding fitted quantities are given in 
Table XIV. 

TABLE XIV. Values of the coefficient A\ in the expression 
da/dtt = exp(Ao-{-Ait) over the range of four-momentum transfer 
0 < | / | < 0 . 4 (GeV/c)2 for lower energy iTp elastic-scattering 
experiments. 

System 

£iab (GeVA) 
Ax 
P(x2) 
s (GeV)2 

Ins 
Reference 

7T p 

1.34 
7.3±0.4 

0.25 
3.41 
1.23 

a 

x p 

1.43-1.51 
7.3±0.6 

0.45 
3.64 
1.29 
b,c 

7T p 

2.0 
8.7±0.5 

0.20 
4.65 
1.54 
b,d 

a L , Ber tanza et al., N u o v a Cimento 19, 467 (1961). 
b K. W. Lai, L . W. Jones, and M. L. Perl, Phys . Rev. Let ters 1, 125 

(1961). 
c M. Chretien, J . Leitner, N . P. Samios, M. Schwartz and J . Steinberger, 

Phys . Rev. 108, 383 (1957). 
d V. Cook, B. Cork, T. F . Hoang, D . Keefe, L. T . Ker th , W. A. Wenzel, 

and T . F . Zipf, Phys . Rev. 123, 320 (1961). 

The w~p and pp diffraction peaks can also be com
pared by using the "quadratic" fit of Eq. (34). Table 
XV presents the average values of Ai and A 2 for pp 
and 7T~p over the s range 6 to 12 (GeV)2. The quadratic 
fits to | / | = 0 . 8 (GeV/c)2 again demonstrate the nar
rower ir^p diffraction peak, although there is no sig-

TABLE XV. Average values of A1 and A 2 for fits to all the data 
tabulated above for the expression da/dQ — exp(A0-]~Axt-{-A2t2) 
over the range of four-momentum transfer 0 < |/ | <0.8 (GeV/c)2. 

System PP 

Ax (GeV/c)"2 

A 2 (GeVA)-4 
7.9±0.2 
2.7±0.3 

9.6±0.4 
3.3±0.5 
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$1 N >& 

2.9Z G«V/c 
3. I 5 6eV/c 
4. I 3 GeV/c 
4.95 GeV/c 

*% \ ^ ^ s= 7.5 GeVc 

+ + \ s = 11.8 GeVfc 

1.5 2.0 
-t(GeV/c)2 

3.0 

FIG. 18. Data for irp normalized elastic scattering differential 
cross section for | / | >0.4 (GeV/c)2 with smooth curves from pp 
elastic scattering differential cross section at s = 7.5 and 11.8 
(GeV)2 plotted for comparison. 

nificant difference in A 2 values between the two 
processes. When the entire angular range is considered, 
however, further significant differences in shape appear. 
In Fig. 18 the normalized differential cross sections of 
all the present v±p data for | / | > 0 . 4 (GeV/c)2 are 
plotted together with smooth curves for the pp scatter
ing at s=7 .5 and 11.8 (GeV)2. For | / | > 1 . 0 (GeV/c)2, 
the ^p elastic cross section appears consistently to be 
several times smaller than the corresponding pp. 

I t is thus clear that ir~p and pp elastic scattering 
behave quite differently in this region of energy. 
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APPENDIX 

We will derive formulas for the forward and back
ward peaks for the simplest type of optical model. 
From (6) and (7) 

}(B) = ( - ) E(2/+l)(Pi(cos0) . (Al) 
\ 2ik / 1=0 

Then 

/(*) = ( -\<Pi+i,(cos6)+<?L'(cosB)']. (A2) 

For 0 close to 0°, cos0^1- ( J0 2 ) , so that for forward 
scattering cos0 is replaced by 1— (|02) in (A2). 

For 0 close to 180° let 0 '=18O°-0, so that 0' is 
small. Then 

c o s 0 ^ - ( l - i 0 / 2 ) . 

For the backward scattering, (A2) then becomes 

/ ( « ' ) = ( — ) { < p i + i ' ( - [ i - ^ , 2 ] ) + ( p i ' ( - [ i - ^ ] ) } 
\ 2ik I 

(A3) 

\ 2ik I (-lj^cpwa-jo-cPL'a-iO]. 
Now, letting x be [ 1 - ( | 0 2 ) ] in (A2) and ( 1 - ( | 0 / 2 ) ] 
in (A3), we note that 

( L + l ) ! r 1 
< P L ' ( * ) = - 1 — 

2 a - 1 ) 1 

( L + l ) ! r ( L - l ) ( L + 2 ) / l - * \ ( L - l ) ( L - 2 ) ( L + 2 ) ( L + 3 ) / l - t f 

KL-1)L (1K2) \ Y r (1)(2)(2)(3) \~2 ) ' 
(L - l ) (L -2 ) (L-3 ) (L+2) (L+3) (L+4) / l -x" 

Then 

<?L+I'(X)±<?L'(X) = 

(1) (2) (3) (2) (3) (4) 

( L + l ) ! f / L + 2 \ / ( L + 2 ) ( L + 3 ) ( L - l ) ( Z , + 2 ) \ / 1 - t f 

( - ) ' +• 

:(̂ K 2(L-l)!l 
/ (L+2)(L- l ) (L+3)(L+4) (L-l)(L-2)(L+2)(L+3)\/l-x' 

XT) 
x~y 12 12 

/ ( L + 2 ) ( L - l ) ( L - 2 ) ( L + 3 ) ( L + 4 ) ( L + 5 ) ( L - l ) ( L - 2 ) ( L - 3 ) ( L + 2 ) ( L + 3 ) ( L + 4 ) \ 

\ 144 144 / 

X (T)"-1 
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Thus, 
( X + l ) , r / 2\ /l—x\ /l—x\2 

(?L+I'(X)+(?L'(X) = '•U2+-J-i(L+2)(2L+2)( J+ML+2)(L-l)(L+3)(2L+2)l J 

1 /1—x\s ~1 
(L+2)(L-l)(L-2)(L+3)(L+4)(2L+2)[ ) + • • • , 

144 V 2 / J 
whereas 

(L+l ) ! 
(?L+I(X)-<PL'(X) 

2{L-\)i 
--HL+2)(4)(^j+ML+2)(L-l)(L+3)(6)(^j 

+—(Z+2)(Z-2)( / . -2) (L+3)(L+4)(8) ( 1 + ••• . 
144 \ 2 / J 

Now we set L^>1 and replace x by 1— (i#2) or 1— (J0/2). The forward diffraction peak differential cross section 
Then is therefore 

r LW LW LW I ^{\-af¥R"lJl{kRd)/kR6j. 
- Z 2 1 + — + • • • , (A4) 

L (2) (4) (12) (16) (144) (64) J Similarly, setting LB'^kRd' and using (A5) and (A3), 

and / l — #\ 

«w(«)-«v<*> m-{—y-twm 
r- T2/3/2 J 4/3/4 r 6/3/6 - i 

= i i — L + _ _ ! + . . . . (A5) r MM? ^kR0,y wy i 
L 4 (4)(16) (36)(64) J x|_l ^ — » ~ ^ ~ - ^ r + ' ' " J' Now . w v V L P (2!)* (3!)» 

l r (i*^')» 1 

2L (1 !)* J 

(1 — a\ /2kR\ Then the backward peak is given by 
]( )Ji(kRe). 

/v,r~ / j * /v *~i 

/ ! (*)=- 1 V . (A6) We define 
2L (2) (4) (12) (16) J 

By setting L6= kR6 and using (A6), (A4), and (A2), ' ' 2l_ (1!): 

(2) (4) (12) (16) J , . K ®kRe'y 
B(kR6', 



FIG. 4. Photograph of an elastic scattering event taken from 
the data film. Here 18 views of the 9 separate spark chambers 
combined on one film may be seen. The liquid-hydrogen target 
lies behind the fiducial plane containing the roman numerals. 


